Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men.

Hormonal and neuromuscular adaptations to strength training were studied in eight male strength athletes (SA) and eight non-strength athletes (NA). The experimental design comprised a 21-week strength-training period. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT) and cortisol (C) and maximal isometric strength, right leg 1 repetition maximum (RM) of the leg extensors were measured at weeks 0, 7, 14 and 21. Muscle cross-sectional area (CSA) of the quadriceps femoris was measured by magnetic resonance imaging (MRI) at weeks 0 and 21. In addition, the acute heavy resistance exercises (AHRE) (bilateral leg extension, five sets of ten RM, with a 2-min rest between sets) including blood samples for the determination of serum T, FT, C, and GH concentrations were assessed before and after the 21-week training. Significant increases of 20.9% in maximal force and of 5.6% in muscle CSA in NA during the 21-week strength training period were greater than those of 3.9% and -1.8% in SA, respectively. There were no significant changes in serum basal hormone concentrations during the 21-week experiment. AHRE led to significant acute decreases in isometric force and acute increases in serum hormones both at weeks 0 and 21. Basal T concentrations (mean of 0, 7, 14 and 21 weeks) and changes in isometric force after the 21-week period correlated with each other (r=0.84, P<0.01) in SA. The individual changes in the acute T responses between weeks 0 and 21 and the changes in muscle CSA during the 21-week training correlated with each other (r=0.76, P<0.05) in NA. The correlations between T and the changes in isometric strength and in muscle CSA suggest that both serum basal testosterone concentrations and training-induced changes in acute testosterone responses may be important factors for strength development and muscle hypertrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app