Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Indomethacin induces differential expression of beta-catenin, gamma-catenin and T-cell factor target genes in human colorectal cancer cells.

Carcinogenesis 2002 January
Indomethacin-induced G(1) arrest and apoptosis of human colorectal cancer (CRC) cells is associated with a dose-dependent decrease in beta-catenin protein levels. Beta-catenin plays a pivotal role in the WNT signalling pathway and its expression is frequently dysregulated at early stages of colorectal carcinogenesis. The objective of this study was to investigate the effect of indomethacin on catenin expression and downstream WNT signalling events in human CRC cells. Beta-catenin, gamma-catenin and T-cell factor (TCF) target gene (cyclin D1, c-MYC and PPARdelta) expression was studied following indomethacin treatment of SW480 and HCT116 cells. Cyclin D1 was used as a model TCF target gene for analysis of beta-catenin-TCF-4 DNA binding and trans-activation. Indomethacin treatment was associated with a specific decrease in beta-catenin (but not gamma-catenin) expression. Resulting TCF target gene expression was gene specific (cyclin D1, decreased; c-MYC, increased; PPARdelta, no significant change). Cyclin D1 promoter analysis revealed that indomethacin disrupted formation of a beta-catenin-TCF-4-DNA complex. Indomethacin-induced G(1) arrest and apoptosis is associated with specific beta-catenin down-regulation in human CRC cells in vitro. Differential expression of TCF target genes following indomethacin treatment implies complex effects on multiple genes which play an important role in colorectal carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app