Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Redox effects on the bacteriochlorophyll a-containing Fenna-Matthews-Olson protein from Chlorobium tepidum.

The BChl a-containing Fenna-Matthews-Olson (FMO) protein from the green sulfur bacterium Chlorobium tepidum was purified and characterized. Fluorescence spectra indicate that efficient excited state quenching occurs at neutral or oxidizing redox potentials. The major fluorescence lifetime at room temperature is approximately 60 ps in samples that are in neutral or oxidizing conditions, and approximately 2 ns in samples where the strong reductant sodium dithionite has been added. A similar change is observed in pump-probe picosecond absorbance difference experiments, where the long life time component increases after dithionite addition. A 16 Gauss wide EPR signal with g factor = 2.005 is observed in samples without dithionite. This signal largely disappears upon addition of dithionite. Dithionite induces large reversible changes in the 77 K absorbance spectra of the purified FMO protein and in whole cells. These results indicate that the FMO protein contains redox active groups, which may be involved in the regulation of energy transfer. Room temperature circular dichroism and low temperature absorption spectra show that dithionite also induces conformational or structural changes of the FMO protein complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app