Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

ACE inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric oxide.

Acute administration of the angiotensin-converting enzyme (ACE) inhibitor captopril enhances insulin-stimulated glucose transport activity in skeletal muscle of the insulin-resistant obese Zucker rat. The present study was designed to assess whether this effect is mediated by an increase in the nonapeptide bradykinin (BK), by a decrease in action of ANG II, or both. Obese Zucker rats (8-9 wk old) were treated for 2 h with either captopril (50 mg/kg orally), bradykinin (200 micrograms/kg ip), or the ANG II receptor (AT(1) subtype) antagonist eprosartan (20 mg/kg orally). Captopril treatment enhanced in vitro insulin-stimulated (2 mU/ml) 2-deoxyglucose uptake in the epitrochlearis muscle by 22% (251 +/- 7 vs. 205 +/- 9 pmol. mg(-1). 20 min(-1); P < 0.05), whereas BK treatment enhanced this variable by 18% (249 +/- 15 vs. 215 +/- 7 pmol. mg(-1). 20 min(-1); P < 0.05). Eprosartan did not significantly modify insulin action. The BK-mediated increase in insulin action was completely abolished by pretreatment with either the specific BK-B(2) receptor antagonist HOE 140 (200 micrograms/kg ip) or the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (50 mg/kg ip). Collectively, these results indicate that the modulation of insulin action by BK likely underlies the metabolic effects of ACE inhibitors in the insulin-resistant obese Zucker rat. Moreover, this modulation of insulin action by BK is likely mediated through B(2) receptors and by an increase in nitric oxide production and/or action in skeletal muscle tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app