Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

In vivo measurement of human wrist extensor muscle sarcomere length changes.

1. Human extensor carpi radialis brevis (ECRB) sarcomere length was measured intraoperatively in five subjects using laser diffraction. 2. In a separate cadaveric study, ECRB tendons were loaded to the muscle's predicted maximum tetanic tension, and tendon strain was measured to estimate active sarcomere shortening at the expense of tendon lengthening. 3. As the wrist joint was passively flexed from full extension to full flexion, ECRB sarcomere length increased from 2.6 to 3.4 microns at a rate of 7.6 nm/deg joint angle rotation. Correcting for tendon elongation during muscle activation yielded an active sarcomere length range of 2.44 to 3.33 microns. Maximal predicted sarcomere shortening accompanying muscle activation was dependent on initial sarcomere length and was always < 0.15 microns, suggesting a minimal effect of tendon compliance. 4. Thin filament lengths measured from electron micrographs of muscle biopsies obtained from the same region of the ECRB muscles were 1.30 +/- .027 (SE) microns whereas thick filaments were 1.66 +/- .027 microns long, suggesting an optimal sarcomere length of 2.80 microns and a maximum sarcomere length for active force generation of 4.26 microns. 5. These experiments demonstrate that human skeletal muscles can function on the descending limb of their sarcomere length-tension relationship under physiological conditions. Thus, muscle force changes during joint rotation are an important component of the motor control system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app