Add like
Add dislike
Add to saved papers

Cocrystal engineering for sustained release of dicamba: Mitigating secondary drift and reducing leaching.

The off-target effects of herbicides present significant challenges in agricultural practices, posing serious threats to both ecological systems and human health. Dicamba, one of the most widely used herbicides, is particularly problematic due to its high volatility and water solubility, which can lead to rapid environmental dispersal, non-target toxicity, and groundwater contamination. To mitigate these issues, we synthesized a novel cocrystal of dicamba and phenazine (DCB-PHE cocrystal) through a combination of theoretical prediction and mechanochemical screening. The DCB-PHE cocrystal was characterized using single-crystal and powder X-ray diffraction, Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis. Compared to pure dicamba, the DCB-PHE cocrystal exhibited a substantial reduction in volatility by 59 % and a decrease in equilibrium solubility by up to 5.4 times across various temperatures (15 °C, 25 °C, 35 °C). Additionally, the dissolution rates were significantly lowered by over 94 %. Leaching experiments demonstrated that the DCB-PHE cocrystal reduced total leachate by 4.9 % and delayed percolation. In greenhouse trials, the DCB-PHE cocrystal caused less damage to exposed soy plants and enhanced herbicidal activity against target weeds, with fresh weight reduction of chicory and ryegrass by 32 % and 28 %, respectively, at the highest dosage. Furthermore, safety assays confirmed that the DCB-PHE cocrystal's safety profile was comparable to that of dicamba in terms of its impact on wheat, and it did not exhibit increased genotoxicity to broad beans. These findings suggest that the DCB-PHE cocrystal is a promising candidate for reducing the environmental impacts of dicamba while maintaining its herbicidal efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app