Add like
Add dislike
Add to saved papers

Excess Intramyocellular Lipid Does Not Affect Muscle Fiber Biophysical Properties in Mice or People with Metabolically Abnormal Obesity.

Diabetes 2024 May 4
Observational studies show correlations between intramyocellular lipid (IMCL) content and muscle strength and contractile function in people with "metabolically abnormal" obesity. However, a clear physiologic mechanism for this association is lacking and causation is debated. We combined immunofluorescent confocal imaging with force measurements on permeabilized muscle fibers from metabolically normal and metabolically abnormal mice and metabolically normal (defined as normal fasting plasma glucose and glucose tolerance) and metabolically abnormal (defined as pre-diabetes and type 2 diabetes) people with overweight/obesity to evaluate relationships among myocellular lipid droplet characteristics (droplet size and density) and biophysical (active contractile and passive viscoelastic) properties. The fiber type specificity of lipid droplet parameters varied between metabolically abnormal and normal mice and among metabolically normal and metabolically abnormal people. However, despite considerable quantities of IMCL in the metabolically abnormal groups, there were no significant differences in peak active tension or passive viscoelasticity between the metabolically abnormal groups and the control group in mice or people. Additionally, there were no significant relationships among IMCL parameters and biophysical variables. Thus, we conclude that IMCL accumulation per se does not impact muscle fiber biophysical properties or physically impede contraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app