Add like
Add dislike
Add to saved papers

Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Porous Carbon Electrodes.

Herein, the performance of asymmetric supercapacitors (ASC) fabricated using ZnCo2O4 (ZCO) nano-hexagons and orange peel-derived activated carbon (OPAC) as electrodes was studied. ZCO was prepared by a double hydroxide method and OPAC was prepared from orange peel followed by KOH activation. For ZCO, the calcination temperature was determined using TGA analysis. The XRD showed the presence of a cubic spinel structure. The chemical structure was analyzed using XPS, FTIR, and Raman spectroscopy respectively. For OPAC, the presence of an amorphous nature was inferred; FTIR and Raman studies indicate the presence of functional groups and defect structure in the material. The presence of ZCO nano-hexagons was observed from SEM and TEM respectively. For OPAC, an interconnected pore structure was observed from the SEM image. The specific capacitance for ZCO and OPAC was found to be 194 F.g-1 and 159 F.g-1 at a current density of 0.25 A.g-1. Further, an ASC was fabricated using ZCO as a positive and OPAC as a negative electrode in 2M KOH-soaked separator. A cell voltage of 1.2 V was achieved and the specific capacitance was calculated to be 64 F.g-1 at 0.25 A.g-1. Further, the cyclic stability and the changes at the electrode/electrolyte interface were studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app