Add like
Add dislike
Add to saved papers

Controlled Molecular Arrangement of Cinnamic Acid in Layered Double Hydroxide through pi-pi Interaction for Controlled Release.

Cinnamic acid (CA) was successfully incorporated into Zn-Al layered double hydroxide (LDH) through coprecipitation. The CA moiety was stabilized in the interlayer space through not only electrostatic interaction but also intermolecular π-π interaction. It was noteworthy that the CA arrangement was fairly independent of the charge density of LDH, showing the important role of the layer-CA and CA-CA interactions in molecular stabilization. Computer simulations using the Monte Carlo method as well as analytical approaches including infrared, UV-vis spectroscopy, and differential scanning calorimetry showed the existence of intermolecular interaction. In order to reinforce molecular stabilization, a neutral derivative of CA, cinnamaldehyde (CAD), was additionally incorporated into LDH. It was clearly shown that CAD played a role as a π-π interaction mediator to enhance the stabilization of CA. The time-dependent release of CA from LDH was first governed by the layer charge density of LDH; however, the existence of CAD provided additional stabilization to the CA arrangement to slow down the release kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app