Add like
Add dislike
Add to saved papers

Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis.

Tris(2,4-di-tert-butylphenyl)phosphate (AO168 =O), a novel organophosphate ester, is prevalent and abundant in the environment, posing great exposure risks to ecological and public health. Nevertheless, the toxicological effects of AO168 =O remain entirely unknown to date. The results in this study indicated that acute exposure to AO168 =O at 10 and 100 μg/L for 5 days obviously impaired cardiac morphology and function of zebrafish larvae, as proofed by decreased heartbeat, stroke volume, and cardiac output and the occurrence of pericardial edema and ventricular hypertrophy. Transcriptomics, polymerase chain reaction, and molecular docking revealed that the strong interaction of AO168 =O and transferrin receptor 1 activated the transportation of ferric iron into intracellular environment. The release of free ferrous ion to cytoplasmic iron pool also contributed to the iron overload in heart region, thus inducing ferroptosis in larvae via generation of excessive reactive oxygen species, glutathione peroxidase 4 inhibition, glutathione depletion and lipid peroxidation. Ferroptosis inhibitor (Fer-1) co-exposure effectively relieved the cardiac dysfunctions of zebrafish, verifying the dominant role of ferroptosis in the cardiotoxicity caused by AO168 =O. This research firstly reported the adverse impact and associated mechanisms of AO168 =O in cardiomyogenesis of vertebrates, underlining the urgency of concerning the health risks of AO168 =O.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app