Add like
Add dislike
Add to saved papers

Subnanometric Osmium Clusters Confined on Palladium Metallenes for Enhanced Hydrogen Evolution and Oxygen Reduction Catalysis.

ACS Nano 2024 March 30
Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5% @Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E 1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app