Add like
Add dislike
Add to saved papers

SASEGAN-TCN: Speech enhancement algorithm based on self-attention generative adversarial network and temporal convolutional network.

Traditional unsupervised speech enhancement models often have problems such as non-aggregation of input feature information, which will introduce additional noise during training, thereby reducing the quality of the speech signal. In order to solve the above problems, this paper analyzed the impact of problems such as non-aggregation of input speech feature information on its performance. Moreover, this article introduced a temporal convolutional neural network and proposed a SASEGAN-TCN speech enhancement model, which captured local features information and aggregated global feature information to improve model effect and training stability. The simulation experiment results showed that the model can achieve 2.1636 and 92.78% in perceptual evaluation of speech quality (PESQ) score and short-time objective intelligibility (STOI) on the Valentini dataset, and can accordingly reach 1.8077 and 83.54% on the THCHS30 dataset. In addition, this article used the enhanced speech data for the acoustic model to verify the recognition accuracy. The speech recognition error rate was reduced by 17.4%, which was a significant improvement compared to the baseline model experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app