Add like
Add dislike
Add to saved papers

Gut-Derived Exosomes Mediate the Microbiota Dysbiosis-Induced Spermatogenesis Impairment by Targeting Meioc in Mice.

Diseases like obesity and intestinal inflammation diseases are accompanied by dysbiosis of the gut microbiota (DSGM), which leads to various complications, including systemic metabolic disorders. DSGM reportedly impairs the fertility of male mice; however, the regulatory mechanism is unclear. Exosomes are molecular mediators of intercellular communication, but the regulation of spermatogenesis by non-reproductive tissue-originated exosomes remains unknown. The present study shows that DSGM altered the miRNA expression profile of mouse circulating exosomes and impaired spermatogenesis. Moreover, the single-cell sequencing results indicate that circulating exosomes from mice with DSGM impaired spermatogenesis, while circulating exosomes from wild mice improved spermatogenesis by promoting meiosis. Further study demonstrates that DSGM leads to abnormal upregulation of miR-211-5p in gut-derived circulating exosomes, which inhibited the expression of meiosis-specific with coiled-coil domain (Meioc) in the testes and impaired spermatogenesis by disturbing meiosis process. In summary, this study defines the important role of gut-derived exosomes in connecting the "gut-testis" axis.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app