We have located links that may give you full text access.
NANOEMULSIONS CONTAINING AMPHOTERICIN B AND PAROMOMYCIN FOR THE TREATMENT OF CUTANEOUS LEISHMANIASIS.
Acta Tropica 2024 March 22
UNLABELLED: Cutaneous leishmaniasis (CL) is a vector-borne disease characterized by skin lesions that can evolve into high-magnitude ulcerated lesions. Thus, this study aimed to develop an innovative nanoemulsion (NE) with clove oil, Poloxamer® 407, and multiple drugs, such as amphotericin B (AmB) and paromomycin (PM), for use in the topical treatment of CL.
METHODS: Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs.
RESULTS: After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4°C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis.
CONCLUSION: It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.
METHODS: Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs.
RESULTS: After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4°C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis.
CONCLUSION: It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.
Full text links
Related Resources
Trending Papers
The Management of Interstitial Lung Disease in the ICU: A Comprehensive Review.Journal of Clinical Medicine 2024 November 6
Septic shock in the immunocompromised cancer patient: a narrative review.Critical Care : the Official Journal of the Critical Care Forum 2024 August 30
Proteinuria and Progression of Renal Damage: The Main Pathogenetic Mechanisms and Pharmacological Approach.Medicina 2024 November 6
Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment.Curēus 2024 October
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app