Add like
Add dislike
Add to saved papers

Evidence for the induction of analgesic cross-tolerance between opioid and apelin/APJ systems in male rats.

BACKGROUND: Opioids are potent pain relievers for managing severe pain. However, their effectiveness is hindered by tolerance, which causes the need for higher doses and leads to adverse effects. In a previous study, we found that prolonged use of apelin, similar to opioids, results in a tolerance to its analgesic effects. It remains unclear whether there is a cross-tolerance between morphine and apelin, meaning if the analgesic effects of one can reduce the effectiveness of the other.

METHODS: The tail-flick test was used to assess the nociceptive threshold. All experiments were carried out on 63 male Wistar rats, which received intrathecal apelin (3µg/rat) or morphine (15µg/rat) for 7 days. To determine cross-tolerance between the analgesic effect of morphine and apelin, the analgesic property of apelin or morphine was assessed in chronic morphine- or apelin-treated groups, respectively. To determine the role of apelin and opioid receptors signaling on the development of analgesic cross-tolerance, F13-A and naloxone, as apelin and opioid receptor antagonists, were injected simultaneously with morphine or apelin. At the end of the tests, the expression levels of apelin and mu-opioid receptors were evaluated by western blotting.

RESULTS: The data indicated that chronic apelin or morphine produced tolerance to the antinociceptive effects of each other. F13-A and naloxone could inhibit the induction of such cross-tolerance. The molecular data showed that there was a significant downregulation of apelin receptors in chronic morphine-treated rats and vice versa.

CONCLUSION: Chronic administration of apelin or morphine induces analgesic cross-tolerance that may, in part, be mediated through receptor interactions and downregulation. The demonstrated efficacy of F13-A in these experiments highlights its potential as a novel target for improving pain management through the inhibition of the apelin/APJ signaling pathway, meriting further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app