Add like
Add dislike
Add to saved papers

Future research perspective on the interfacial physics of non-invasive glaucoma testing in pathogen transmission from the eyes.

Biointerphases 2024 January 2
Non-contact tonometry (NCT) is a non-invasive ophthalmologic technique to measure intraocular pressure (IOP) using an air puff for routine glaucoma testing. Although IOP measurement using NCT has been perfected over many years, various phenomenological aspects of interfacial physics, fluid structure interaction, waves on corneal surface, and pathogen transmission routes to name a few are inherently unexplored. Research investigating the interdisciplinary physics of the ocular biointerface and of the NCT procedure is sparse and hence remains to be explored in sufficient depth. In this perspective piece, we introduce NCT and propose future research prospects that can be undertaken for a better understanding of the various hydrodynamic processes that occur during NCT from a pathogen transmission viewpoint. In particular, the research directions include the characterization and measurement of the incoming air puff, understanding the complex fluid-solid interactions occurring between the air puff and the human eye for measuring IOP, investigating the various waves that form and travel; tear film breakup and subsequent droplet formation mechanisms at various spatiotemporal length scales. Further, from an ocular disease transmission perspective, the disintegration of the tear film into droplets and aerosols poses a potential pathogen transmission route during NCT for pathogens residing in nasolacrimal and nasopharynx pathways. Adequate precautions by opthalmologist and medical practioners are therefore necessary to conduct the IOP measurements in a clinically safer way to prevent the risk associated with pathogen transmission from ocular diseases like conjunctivitis, keratitis, and COVID-19 during the NCT procedure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app