Add like
Add dislike
Add to saved papers

Which Diastolic Pressure Should Be Used to Assess Diastolic Function?

BACKGROUND: Although high left ventricular filling pressures [left ventricular (LV) end-diastolic pressure or pulmonary capillary wedge pressure (PCWP)] are widely taken as surrogates for LV diastolic dysfunction, the actual distending pressure that governs LV diastolic stretch is transmural pressure difference (∆PTM). Clinically, preferring ∆PTM over PCWP may improve diagnostic and therapeutic decision-making. We aimed to compare the clinical implications of diastolic function characterization based on PCWP or ∆PTM.

METHODS: We retrospectively screened our hospital database for adult patients with a clinical diagnosis of heart failure who underwent right heart catheterization. Echocardiographic diastolic dysfunction was graded according to the current guidelines. LV end-diastolic properties were assessed with construction of complete end-diastolic pressure-volume relationship (EDPVR) curves using the single-beat method. Survival status was checked via the electronic national health-care system.

RESULTS: A total of 693 cases were identified in our database; the final study population comprised 621 cases. ∆PTM-based, but not PCWP-based, EDPVR diastolic stiffness constants were significantly predictive of advanced diastolic dysfunction. PCWP-based diastolic stiffness constants were not able to predict 5-year mortality, whereas ∆PTM-based EDPVR stiffness constants and volumes all turned out to have significant predictive power for 5-year mortality.

CONCLUSION: Left ventricular diastolic function assessment can be improved using ∆PTM instead of PCWP. As ∆PTM ultimately linked to right-sided functions, this approach emphasizes the limitations of taking LV diastolic function as an isolated phenomenon and underlines the need for a complete hemodynamic assessment involving the right heart in therapeutic and prognostic decision-making processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app