Add like
Add dislike
Add to saved papers

Serum neurofilament indicates accelerated neurodegeneration and predicts mortality in late-stage Parkinson's disease.

NPJ Parkinson's Disease 2024 January 10
Different stages of Parkinson's disease (PD) are defined by clinical criteria, while late-stage PD is marked by the onset of morbidity milestones and rapid clinical deterioration. Based on neuropathological evidence, degeneration in the dopaminergic system occurs primarily in the early stage of PD, raising the question of what drives disease progression in late-stage PD. This study aimed to investigate whether late-stage PD is associated with increased neurodegeneration dynamics rather than functional decompensation using the blood-based biomarker serum neurofilament light chain (sNfL) as a proxy for the rate of neurodegeneration. The study included 118 patients with PD in the transition and late-stage (minimum disease duration 5 years, mean (SD) disease duration 15 (±7) years). The presence of clinical milestones (hallucinations, dementia, recurrent falls, and admission to a nursing home) and mortality were determined based on chart review. We found that sNfL was higher in patients who presented with at least one clinical milestone and increased with a higher number of milestones (Spearman's ρ = 0.66, p < 0.001). Above a cutoff value of 26.9 pg/ml, death was 13.6 times more likely during the follow-up period (95% CI: 3.53-52.3, p < 0.001), corresponding to a sensitivity of 85.0% and a specificity of 85.7% (AUC 0.91, 95% CI: 0.85-0.97). Similar values were obtained when using an age-adjusted cutoff percentile of 90% for sNfL. Our findings suggest that the rate of ongoing neurodegeneration is higher in advanced PD (as defined by the presence of morbidity milestones) than in earlier disease stages. A better understanding of the biological basis of stage-dependent neurodegeneration may facilitate the development of neuroprotective means.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app