Add like
Add dislike
Add to saved papers

Effects of different chronic restraint stress periods on anxiety- and depression-like behaviors and tryptophan-kynurenine metabolism along the brain-gut axis in C57BL/6N mice.

Chronic restraint stress (CRS) is a widely used stimulus to induce anxiety- and depression-like behaviors, linked to alterations in tryptophan-kynurenine (TRP-KYN) metabolism in animals. This study assessed the effects of different CRS periods on anxiety- or depression-like behaviors and TRP-KYN metabolism along brain-gut axis in C57BL/6N mice. Results showed that one-week CRS decreased the open arm entries of mice in elevated plus maze and delayed latency of feeding in novelty suppressed feeding test. Four-week CRS reduced sucrose preference, increases forced swimming immobility time, and also induced anxiety-like behaviors of mice. UPLC-MS/MS analysis revealed decreased levels of the neurotoxic 3-hydroxykynurenine (3-HK) and quinolinic acid (QA), and an increase in the neuroprotective kynurenic acid (KA) in the hippocampus of one-week CRS mice; meanwhile, four-week CRS mice displayed a reduction in KA and increases in 3-HK and QA. In the colon, both one-week and four-week CRS mice exhibited significant reductions in 3-HK and QA, with a marked increase of KA exclusively in four-week CRS mice. Briefly, one-week CRS only induced anxiety-like behaviors with hippocampal neuroprotection in TRP-KYN metabolism, whereas four-week CRS caused anxiety- and depression-like behaviors with neurotoxicity. In the colon, during both CRS periods, KYN was metabolized in the direction of NAD+ production. However, four-week CRS triggered intestinal inflammation risk with increased KA. Summarily, slightly short-term stress has beneficial effects on mice, while prolonged chronic stress can lead to pathological changes. This study offers valuable insights into stress-induced emotional disturbances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app