Add like
Add dislike
Add to saved papers

Differential expression of immune checkpoints (OX40/OX40L and PD-1/PD-L1) in decidua of unexplained recurrent spontaneous abortion women.

Human Immunology 2023 December 23
In this study, we aimed to investigate the expression of OX40, OX40L, PD-1 and PD-L1 in patients with unexplained recurrent spontaneous abortion (URSA) compared to normal pregnancies (NP). A total of 50 patients who were diagnosed with URSA and 41 NP were recruited to this study. Real-time polymerase chain reaction (RT-PCR) was used to determine the expression of OX40, OX40L, PD-1 and PD-L1 in decidual tissues; Immunohistochemistry (IHC) was conducted to characterize the distribution of the involved genes in decidual tissues; Double immunofluorescence staining was used to prove the localization of the involved genes in decidual tissues. The concentrations of OX40L and PD-L1 in plasma were measured with enzyme-linked immunosorbent assay (ELISA). The expression of OX40L in the decidua of URSA patients was significantly increased compared to that in the NP group, while the expression of PD-L1 in the URSA group was decreased compared to that in the NP group. Both proteins are localized in the decidual stroma as analyzed by double immunofluorescence staining. The staining results were confirmed at the mRNA level of decidual tissues, while the mRNA level of peripheral blood showed no significant difference. In conclusion, the results suggest that decidual stromal cells may promote the interaction with OX40 on T cells by upregulating the expression of OX40L and reduce the interaction with PD-1 on T cells by downregulating the expression of PD-L1 in URSA patients, which may interfere with the immune tolerance of the maternal-fetal interface, leading to poor pregnancy outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app