Add like
Add dislike
Add to saved papers

AMFR promotes innate immunity activation and proteasomal degradation of HMGCR in response to influenza virus infection in A549 cells.

Virology 2023 August 32
Differential regulation of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which is considered the rate-limiting enzyme of the cholesterol biosynthesis pathway, has been reported in case of infection with many viruses. In our study, we have found that influenza virus infection decreases total cellular cholesterol level which is directly related to the downregulation of HMGCR protein. We found that HMGCR is degraded through ubiquitination and proteasomal-mediated pathway upon viral infection. Upregulation of Autocrine Motility Factor Receptor (AMFR), which is an E3-ubiquitin ligase of HMGCR, was also observed. Furthermore, knockdown of AMFR inhibits ubiquitination of HMGCR and also leads to inactivation of the innate immunity components TANK-binding kinase 1 (TBK1) and Interferon regulatory factor 3 (IRF3). Our study is the first to show the role of HMGCR and AMFR in influenza virus infection and reveals that AMFR plays a crucial role in the downregulation of HMGCR and the activation of innate immunity following influenza virus infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app