Add like
Add dislike
Add to saved papers

Targeting the Pseudomonas aeruginosa quorum sensing system to inhibit virulence factors and eradicate biofilm formation using AHL-analogue phytochemicals.

Quorum sensing plays a major role in the expression of virulence and development of biofilm in the human pathogen Pseudomonas aeruginosa . Natural compounds are well-known for their antibacterial characteristics by blocking various metabolic pathways. The goal of this study is to find natural compounds that mimic AHL (Acyl homoserine lactone) and suppress virulence in P. aeruginosa , which is triggered by quorum sensing-dependent pathways as an alternative drug development strategy. To support this rationale, functional network analysis and in silico investigations were carried out to find natural AHL analogues, followed by molecular docking studies. Out of the 16 top-hit AHL analogues derived from phytochemicals, seven ligands were found to bind to the quorum sensing activator proteins. Cassialactone, an AHL analogue, exhibited the highest binding affinity for RhlI, RhlR, and PqsE of P. aeruginosa , with a docking score of -9.4, -8.9, and -8.7 kcal/mol, respectively. 2(5H)-Furanone, a well-known inhibitor, was also docked to compare the docking score and intermolecular interactions between the ligand and the target protein. Furthermore, molecular dynamics simulations and binding free energy calculations were performed to determine the stability of the docked complexes. Additionally, the ADME properties of the analogues were also analyzed to evaluate the pharmacological parameters. Functional network analysis further showed that the interconnectedness of proteins such as RhlI, RhlR, LasI, and PqsE with the virulence and biofilm phenotype of the pathogen could offer potential as a therapeutic target.Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app