Add like
Add dislike
Add to saved papers

Hydroxychloroquine induces endothelium-dependent and endothelium-independent relaxation of rat aorta.

BACKGROUND: Hydroxychloroquine (HCQ) is an antimalarial that is widely used in the management of rheumatoid arthritis and other autoimmune diseases. In this study, we aimed to examine the vascular effects of HCQ on rat aorta (RA).

METHODS: The RA rings were suspended in isolated organ baths and tension was recorded isometrically. HCQ-induced relaxations were tested in the presence of the nitric oxide synthase inhibitor, nitro-L-arginine methyl ester (L-NAME, 100 mM); the cyclooxygenase enzyme inhibitor, indomethacin (10 mM); the calcium (Ca2+) ion channel blocker, nilvadipine (10 μM); and the K+ ion channel inhibitors, tetraethylammonium (1 mM), glibenclamide (10 mM), 4-aminopyridine (1 mM), and barium chloride (30 mM). The effect of HCQ on Ca2+ channels was examined using Ca2+-free Krebs solution, and adding calcium chloride (CaCl2 , 10-5- 10-2 M) cumulatively to baths incubated with HCQ.

RESULTS: Removing the endothelium resulted in less relaxation of RA rings compared to endothelium-intact rings (p < 0.05). The effect of endothelium was supported by using L-NAME where HCQ produced-vasorelaxation was decreased (p < 0.05). The contraction of vascular rings was inhibited to a significant degree following the addition of CaCl2 , PE, or KCl on HCQ-incubated RA rings (p < 0.05). The incubation of the RA rings with the Ca2+ channel blocker, the K+ channel blockers, and the COX inhibitor, indomethacin did not significantly affect vascular relaxation induced by HCQ.

DISCUSSION: HCQ produced relaxation of RA rings. The relaxation mechanism differs according to the concentration of HCQ. At con-centrations of 10-6 and 10-5 M, the relaxation is endothelium-dependent and mediated by NO. We strongly suggest that Ca2+ channel inhibition is involved at concentrations of 10-5 and 10-4 M, as well as NO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app