Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development and characterization of a novel human 3D model of bone metastasis from breast carcinoma in vitro cultured.

Bone 2021 Februrary
Breast cancer frequently metastasizes to the skeleton causing significant morbidity. None of the therapeutic strategies used to manage breast cancer bone metastases are really curative. Here, we set-up a novel and advanced model by using fresh tissue from human vertebral bone metastasis from breast carcinoma patients able to retain the tumor microenvironment. The tissue model is based on an ex-vivo culture for up to 40 days and on a constant monitoring of tissue viability, gene expression profile (IL10, IL1b, MMP1, MMP7, PTH1R, PTH2R, TNF, ACP5, SPI1, VEGFA, CTSK, TGF-β) and histological and immunohistochemical analyses (CDH1/E-cadherin, CDH2/N-cadherin, KRT8/Cytokeratin 8, KRT18/Cytokeratin 18, Ki67, CASP3/Caspase 3, ESR1/Estrogen Receptor Alpha, CD68 and CD8). Results confirmed the development of a reliable, reproducible and cost-effective advanced model of breast cancer bone metastasis able to preserve and maintain long-term tissue viability, as well as molecular markers, tissue histomorphology, tissue micro-architecture and antigen expression. The study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumor subtypes so predicting patient specific responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app