Add like
Add dislike
Add to saved papers

The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca 2+ Signaling Events During the Early Development of Zebrafish (Danio rerio).

We have visualized many of the Ca2+ signaling events that occur during the early stages of zebrafish development using complementary luminescent and fluorescent imaging techniques. We initially microinject embryos with the luminescent Ca2+ reporter, f-holo-aequorin, and using a custom-designed luminescent imaging system, we can obtain pan-embryonic visual information continually for up to the first ~24 h postfertilization (hpf). Once we know approximately when and where to look for these Ca2+ signaling events within a complex developing embryo, we then repeat the experiment using a fluorescent Ca2+ reporter such as calcium green-1 dextran and use confocal laser scanning microscopy to provide time-lapse series of higher-resolution images. These protocols allow us to identify the specific cell types and even the particular subcellular domain (e.g., nucleus or cytoplasm) generating the Ca2+ signal. Here, we outline the techniques we use to precisely microinject f-holo-aequorin or calcium green-1 dextran into embryos without affecting their viability or development. We also describe how to inject specific regions of early embryos in order to load localized embryonic domains with a particular Ca2+ reporter. These same techniques can also be used to introduce other membrane-impermeable reagents into embryos, including Ca2+ channel antagonists, Ca2+ chelators, fluorescent dyes, RNA, and DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app