Add like
Add dislike
Add to saved papers

Identification and functional characterization of interferon-γ-inducible lysosomal thiol reductase (GILT) gene in common Chinese cuttlefish Sepiella japonica.

Interferon-γ-inducible lysosomal thiol reductase (GILT) is a pivotal enzyme involved in the histocompatibility complex (MHC) class II-restricted antigen processing whereby it catalyzes the disulfide bond reduction in the endocytic pathway. Here, a novel GILT homologue termed as SjGILT firstly identified from common Chinese cuttlefish Sepiella japonica. SjGILT shared domain topology containing a signal peptide, a signature sequence CQHGX2 ECX2 NX4 C, an activate-site CXXC motif, two potential N-glycosylation sites and six conserved cysteins with its counterparts in other animals. SjGILT transcripts were constitutively expressed in all examined tissues in S. japonica, with the higher expression levels in immune-related tissues such as pancreas, intestines, liver and gills. Upon lipopolysaccharide (LPS) challenge, SjGILT transcripts were significantly induced in liver and gill tissues, and SjGILT protein transferred to late endosomes and lysosomes in HeLa cells. Further study showed that recombinant SjGILT had obvious thiol reductase activity demonstrated by reducing the interchain disulfide bonds of IgG under acidic conditions. Taken together, these results suggested that SjGILT may be involved in the immune response to bacteria challenge, and then might play an important role in the processing of MHC class II-restricted antigens in S. japonica.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app