Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Specific membrane dynamics during neural stem cell division.

Neural stem and progenitor cells in the developing cerebral cortex, but also when grown in culture, display a range of distinct phenomena during cytokinesis. Cleavage furrow ingression in neural progenitor cells can bisect their basal processes and, later on, result in midbody formation at the apical surface. After abscission, these midbodies are released as membrane-bound particles into the extracellular space, in contrast to uptake and degradation of postabscission midbodies in other cell types. Whether these cellular dynamics are unique to neural stem cells, or more ubiquitously found, and what biological significance these processes have for cell differentiation or cell-cell communication, are open questions that require a combination of approaches. Here, we discuss techniques to study the specific membrane dynamics underlying the basal process splitting and postabscission midbody release in neural stem cells. We provide some basic concepts and protocols to isolate, enrich and stain released midbodies, and follow midbody dynamics over time. Moreover, we discuss techniques to prepare cortical sections for high-voltage electron microscopy to visualize the fine basal processes of progenitor cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app