Add like
Add dislike
Add to saved papers

Glutamine Metabolism in Gliomas.

By histological, morphological criteria, and malignancy, brain tumors are classified by WHO into grades I (most benign) to IV (highly malignant), and gliomas are the most frequently occurring class throughout the grades. Similar to peripheral tumors, the growth of glia-derived tumor cells largely depends on glutamine (Gln), which is vividly taken up by the cells, using mostly ASCT2 and SN1 as Gln carriers. Tumor growth-promoting effects of Gln are associated with its phosphate-activated glutaminase (GA) (specifically KGA)-mediated degradation to glutamate (Glu) and/or with its entry to the energy- and intermediate metabolite-generating pathways related to the tricarboxylic acid cycle. However, a subclass of liver-type GA are absent in glioma cells, a circumstance which allows phenotype manipulations upon their transfection to the cells. Gln-derived Glu plays a major role in promoting tumor proliferation and invasion. Glu is relatively inefficiently recycled to Gln and readily leaves the cells by exchange with the extracellular pool of the glutathione (GSH) precursor Cys mediated by xc- transporter. This results in (a) cell invasion-fostering interaction of Glu with ionotropic Glu receptors in the surrounding tissue, (b) intracellular accumulation of GSH which increases tumor resistance to radio- and chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app