Add like
Add dislike
Add to saved papers

Elucidation of the mechanism of atorvastatin-induced myopathy in a rat model.

Toxicology 2016 June 2
Myopathy is among the well documented and the most disturbing adverse effects of statins. The underlying mechanism is still unknown. Mitochondrial dysfunction related to coenzyme Q10 decline is one of the proposed theories. The present study aimed to investigate the mechanism of atorvastatin-induced myopathy in rats. In addition, the mechanism of the coenzyme Q10 protection was investigated with special focus of mitochondrial alterations. Sprague-Dawely rats were treated orally either with atorvastatin (100mg/kg) or atorvastatin and coenzyme Q10 (100mg/kg). Myopathy was assessed by measuring serum creatine kinase (CK) and myoglobin levels together with examination of necrosis in type IIB fiber muscles. Mitochondrial dysfunction was evaluated by measuring muscle lactate/pyruvate ratio, ATP level, pAkt as well as mitochondrial ultrastructure examination. Atorvastatin treatment resulted in a rise in both CK (2X) and myoglobin (6X) level with graded degrees of muscle necrosis. Biochemical determinations showed prominent increase in lactate/pyruvate ratio and a decline in both ATP (>80%) and pAkt (>50%) levels. Ultrastructure examination showed mitochondrial swelling with disrupted organelle membrane. Co-treatment with coenzyme Q10 induced reduction in muscle necrosis as well as in CK and myoglobin levels. In addition, coenzyme Q10 improved all mitochondrial dysfunction parameters including mitochondrial swelling and disruption. These results presented a model for atorvastatin-induced myopathy in rats and proved that mitochondrial dysfunction is the main contributor in statin-myopathy pathophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app