Add like
Add dislike
Add to saved papers

Oxymatrine attenuates diabetes-associated cognitive deficits in rats.

AIM: Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait (the Chinese herb Kushen) and exhibits diverse pharmacological actions. In this work we investigated the effects of OMT on diabetes-associated cognitive decline (DACD) in a rat model of diabetes and explored the mechanisms of action.

METHODS: Male Wistar rats were injected with streptozotocin (65 mg/kg, ip) once to induce diabetes. The rats were then treated with vehicle or OMT (60 or 120 mg/kg per day, ip) for 7 weeks. Memory function was assessed using Morris water maze test. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), NF-κB p65 unit, TNF-α, IL-1β and caspase-3 in the cerebral cortex and hippocampus were quantified.

RESULTS: The diabetic rats exhibited markedly reduced body weight and increased plasma glucose level. The memory function of the rats assessed using Morris water maze test showed significant reduction in the percentage of time spent in the target quadrant and the number of times crossing the platform, coupled with markedly prolongation of escape latency and mean path length. Moreover, the rats showed oxidative stress (significantly increased MDA, decreased SOD and reduced GSH levels), as well as significant increases of NF-κB p65 unit, TNF-α, IL-1β and caspase-3 levels in the cerebral cortex and hippocampus. Chronic treatment with OMT dose-dependently reversed these behavioral, biochemical and molecular changes in the diabetic rats. However, the swimming speed had no significant difference among the control, diabetic and OMT-treated diabetic rats.

CONCLUSION: Chronic treatment with OMT alleviates diabetes-associated cognitive decline in rats, which is associated with oxidative stress, inflammation and apoptotic cascades.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app