Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan

Cheryl Longman, Martin Brockington, Silvia Torelli, Cecilia Jimenez-Mallebrera, Colin Kennedy, Nofal Khalil, Lucy Feng, Ravindra K Saran, Thomas Voit, Luciano Merlini, Caroline A Sewry, Susan C Brown, Francesco Muntoni
Human Molecular Genetics 2003 November 1, 12 (21): 2853-61
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders. A new pathomechanism has recently been identified in a group of these disorders in which known or putative glycosyltransferases are defective. Common to all these conditions is the hypoglycosylation of alpha-dystroglycan. Fukuyama CMD, muscle-eye-brain disease and Walker-Warburg syndrome, each associated with eye abnormalities and neuronal migration defects, result from mutations in fukutin, POMGnT1 and POMT1, respectively, while mutations in the fukutin-related protein (FKRP) gene cause congenital muscular dystrophy 1C, typically lacking brain involvement. Another putative glycosyltransferase, Large, is mutated in the myodystrophy mouse. The human homologue of this gene is therefore a strong candidate for involvement in novel forms of muscular dystrophy. We studied 36 patients with muscular dystrophy and either mental retardation, structural brain changes or abnormal alpha-dystroglycan immunolabelling, unlinked to any reported CMD loci. Linkage analysis in seven informative families excluded involvement of LARGE but sequencing of this gene in the remaining 29 families identified one patient with a G1525A (Glu509Lys) missense mutation and a 1 bp insertion, 1999insT. This 17-year-old girl presented with congenital muscular dystrophy, profound mental retardation, white matter changes and subtle structural abnormalities on brain MRI. Her skeletal muscle biopsy showed reduced immunolabelling of alpha-dystroglycan. Immunoblotting with an antibody to a glycosylated epitope demonstrated a reduced molecular weight form of alpha-dystroglycan that retained some laminin binding activity. This is the first description of mutations in the human LARGE gene and we propose to name this new disorder MDC1D.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"