Add like
Add dislike
Add to saved papers

Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors.

Cancer Research 2003 August 2
Insulin-like growth factors (IGFs) play a crucial role in regulating cell proliferation and differentiation. The aim of this study was to examine the potential relationship between serum IGF-I levels and breast cancer risk. To do this, we studied liver-specific IGF-I gene-deleted (LID) mice, in which circulating IGF-I levels are 25% of that in control mice. Mammary tumors were induced in two ways: (a) by exposing mice to the carcinogen 7,12-dimethybenz (a)anthracene; and (b) by crossing LID mice with C3(1)/SV40 large T-antigen transgenic mice. In both models, LID mice exhibited a delayed latency period of mammary tumor development. In the 7,12-dimethybenz (a)anthracene-induced mammary tumor model, the incidence of palpable mammary tumors was significantly lower in LID mice (26% versus 56% in controls), and the onset of the tumors was delayed (74 +/- 1.2 days in LID mice versus 59.5 +/- 1.1 days in controls). Histological analysis showed extensive squamous metaplasia in late-stage mammary tumors of control mice, whereas late-stage tumors from LID mice exhibited extensive hyperplasia, but little metaplasia. In control mice, the onset of C3(1)/SV40-large T-antigen-induced mammary tumors occurred at 21.6 +/- 1.8 weeks of age, whereas in LID mice the average age of onset was 30.2 +/- 1.7 weeks. In addition, 60% of the mice in the control group developed two or more mammary tumors per mouse, whereas in the LID mice only 30% developed more than one mammary tumor per mouse. Our data demonstrate that circulating IGF-I levels play a significant role as a risk factor in the onset and development of mammary tumors in two well-established animal models of breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app