Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

L-dopaergic components in the caudal ventrolateral medulla in baroreflex neurotransmission.

L-3,4-Dihydroxyphenylalanine (L-DOPA) is probably a transmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii; L-DOPA functions tonically to activate depressor sites of the caudal ventrolateral medulla, which receives input from the nucleus tractus solitarii [Misu Y. et al. (1996) Prog. Neurobiol. 49, 415-454]. We have attempted to clarify whether or not L-DOPAergic components within the caudal ventrolateral medulla are involved in baroreflex neurotransmission in anesthetized rats. Electrolytic lesions of the right nucleus tractus solitarii (1 mA d.c. for 10 s, 10 days before measurement) selectively decreased by 45% the tissue content of L-DOPA in the dissected ipsilateral caudal ventrolateral medulla. Electrolytic lesions did not decrease dopamine, norepinephrine and epinephrine levels. During microdialysis of the right caudal ventrolateral medulla, extracellular levels of L-DOPA, norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid were consistently detectable using high-performance liquid chromatography with electrochemical detection. However, extracellular dopamine levels were lower than the assay limit. Baroreceptor activation by i.v. phenylephrine selectively evoked L-DOPA without increasing the levels of norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid. This L-DOPA release was suppressed by acute lesion in the ipsilateral nucleus tractus solitarii. Intermittent stimulation of the right aortic depressor nerve (20 Hz, 3 V, 0.3 ms duration, for 30 min) repetitively and constantly caused L-DOPA release, hypotension and bradycardia, without increases in levels of norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid. Local inhibition of L-DOPA synthesis with alpha-methyl-p-tyrosine (30 microM) infused into the ipsilateral caudal ventrolateral medulla gradually decreased basal levels of L-DOPA and 3,4-dihydroxyphenylacetic acid without decreasing norepinephrine and epinephrine. The inhibition of L-DOPA synthesis interrupted L-DOPA release and decreased by 65% depressor responses elicited by aortic nerve stimulation; however, it produced no effect on bradycardic responses. CoCl2 (119 ng), a mainly presynaptic inhibitory transmission marker, and L-DOPA methyl ester (1 microg), a competitive L-DOPA antagonist, when microinjected into depressor sites of the right caudal ventrolateral medulla, reduced by 60% depressor responses to transient ipsilateral stimulation of the aortic nerve (20 Hz, 3 V, 0.1 ms duration, for 10 s). No changes in bradycardic responses were observed. There may exist an L-DOPAergic relay from the nucleus tractus solitarii to the caudal ventrolateral medulla. L-DOPAergic components in the caudal ventrolateral medulla are involved in baroreflex neurotransmission via a baroreceptor-aortic depressor nerve-nucleus tractus solitarii-caudal ventrolateral medulla relay in the rat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app