Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1alpha (HNF-1alpha) gene.

One form of maturity-onset diabetes of the young, Type 3 (MODY3), results from mutations in the gene coding for hepatocyte nuclear factor-1alpha (HNF-1alpha), a transcription factor first described in the liver. MODY3 is characterized by a defective glucose-stimulated insulin secretion. Earlier observations of glycosuria with normal blood glucose levels in some MODY families suggest an additional renal manifestation of the respective genetic defect. We measured the renal threshold for glucose in five diabetic carriers of a missense mutation (Arg 272 His) in HNF-1alpha and, for comparison, in eight Type 1 diabetic patients, applying a non-invasive protocol of frequent parallel blood and urine sampling during a slow shift in blood glucose levels. We found that the mean renal threshold for glucose was lowered in the HNF-1alpha diabetic patients compared to those with Type 1 diabetes (6.5 +/- 0.9 mmol l(-1) vs 10.7 +/- 0.5 mmol l(-1); p < 0.01). This lowered glucose threshold might be an indication of an extra-pancreatic effect of HNF-1alpha gene mutations in humans. Defects in HNF-1alpha may lead to an altered tubular glucose reabsorption, possibly due to decreased expression of the renal glucose transporter proteins involved in reabsorption of glucose from the urine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app