Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts.

There is increasing evidence that cellular responses to stress are in part regulated by protein kinases, although specific mechanisms are not well defined. The purpose of these experiments was to investigate potential upstream signaling events activated during heat shock in NIH3T3 fibroblasts. Experiments were designed to ask whether heat shock activates p60 c-Src tyrosine kinase or phosphatidylinositol 3-kinase (PI 3-kinase). Using in vitro protein kinase activity assays, it was demonstrated that heat shock stimulates c-Src and PI 3-kinase activity in a time-dependent manner. Also, there was increased PI 3-kinase activity in anti-phosphotyrosine and anti-c-Src immunoprecipitated immunocomplexes from heated cells. Heat shock activated mitogen-activated protein kinase (MAPK) and p70 S6 kinase (S6K) in these cells. The role of PI 3-kinase in regulating heat shock activation of MAPK and p70 S6K was investigated using wortmannin, a specific pharmacological inhibitor of PI 3-kinase. The results demonstrated that wortmannin inhibited heat shock activation of p70 S6K but only partially inhibited heat activation of MAPK. A dominant negative Raf mutant inhibited activation of MAPK by heat shock but did not inhibit heat shock stimulation of p70 S6K. Genistein, a tyrosine kinase inhibitor, and suramin, a growth factor receptor inhibitor, both inhibited heat shock stimulation of MAPK activity and tyrosine phosphorylation of MAPK. Furthermore, a selective epidermal growth factor receptor (EGFR) inhibitor, tryphostin AG1478, and a dominant negative EGFR mutant also inhibited heat shock activation of MAPK. Heat shock induced EGFR phosphorylation. These results suggest that early upstream signaling events in response to heat stress may involve activation of PI 3-kinase and tyrosine kinases, such as c-Src, and a growth factor receptor, such as EGFR; activation of important downstream pathways, such as MAPK and p70 S6K, occur by divergent signaling mechanisms similar to growth factor stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app