Clinical Trial
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Effects of systemic morphine on responses of primates to first or second pain sensations.

Pain 1996 August
Despite evidence that systemic morphine preferentially attenuates second pain sensations that are presumed to result from activation of unmyelinated (C) nociceptors, most animal models of nociception elicit sensations that result from or are dominated by activation of myelinated (A-delta) nociceptors. Therefore, methods were developed to directly compare the effects of morphine on late (second) pain sensations and early onset (first) pain sensations in an animal model. In order to establish appropriate stimulus parameters, human psychophysical experiments compared characteristics of sensations evoked by brief (pulsed) thermal stimulation and ramp-and-hold thermal stimulation. Brief (500 msec) contact of a pre-heated thermode with the skin produced late pain sensations with peripheral conduction velocities in the range of C afferents, as estimated by latencies from stimulation of proximal and distal sites on the leg. The sensations evoked by brief contact increased with successive contacts (pulses) at 0.4 Hz, demonstrating temporal summation of sensation intensity. Pretreatment of the skin with capsaicin enhanced the late pain sensations from pulsed stimulation. In contrast, peak sensations evoked by ramp-and-hold thermal stimulation were evoked at similar latencies from disparate sites on the leg, and capsaicin pretreatment of the skin did not increase the magnitude of these sensations. The pulsed and ramp-and-hold forms of stimulation were used in a paradigm designed to test for differential effects of systemic morphine on operant responses of non-human primates. Low doses of morphine reduced operant responding to pulsed thermal contact, while higher doses were required to affect responses to ramp-and-hold thermal stimulation. The low doses of morphine did not suppress non-nociceptive (intertrial) motor responses, indicating that motor inhibition was not responsible for the effects on escape responses to pulsed stimulation. Measurements of skin temperature 10 cm from the site of stimulation showed that morphine had no effect on baseline temperature but attenuated changes in skin temperature that were elicited by pulsed and by ramp-and-hold stimulation. This effect of morphine on skin temperature responses could not account for the reduction of operant responsivity to thermal stimulation. These results support previous findings that systemic morphine preferentially attenuates second pain sensations, and a new animal model of morphine-sensitive thermal nociception is established. These findings demonstrate the importance of defining the sources of afferent input and the response measures in experiments which attempt to measure antinociceptive effects of pharmacological agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app