Journal Article
Validation Study
Add like
Add dislike
Add to saved papers

Neurodegenerative biomarkers in different chambers of the eye relative to plasma: an agreement validation study.

BACKGROUND: Protein biomarkers have been broadly investigated in cerebrospinal fluid and blood for the detection of neurodegenerative diseases, yet a clinically useful diagnostic test to detect early, pre-symptomatic Alzheimer's disease (AD) remains elusive. We conducted this study to quantify Aβ40, Aβ42, total Tau (t-Tau), hyperphosphorylated Tau (ptau181), glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) in eye fluids relative to blood.

METHODS: In this cross-sectional study we collected vitreous humor, aqueous humor, tear fluid and plasma in patients undergoing surgery for eye disease. All six biomarkers were quantitatively measured by digital immunoassay. Spearman and Bland-Altman correlation analyses were performed to assess the agreement of levels between ocular fluids and plasma.

RESULTS: Seventy-nine adults underwent pars-plana vitrectomy in at least one eye. Of the 79, there were 77 vitreous, 67 blood, 56 tear fluid, and 51 aqueous samples. All six biomarkers were quantified in each bio-sample, except GFAP and NfL in tear fluid due to low sample volume. All six biomarkers were elevated in vitreous humor compared to plasma samples. T-Tau, ptau181, GFAP and NfL were higher in aqueous than in plasma, and t-Tau and ptau181 concentrations were higher in tear fluid than in plasma. Significant correlations were found between Aβ40 in plasma and tears (r = 0.5; p = 0.019), t-Tau in plasma and vitreous (r = 0.4; p = 0.004), NfL in plasma and vitreous (r = 0.3; p = 0.006) and plasma and aqueous (r = 0.5; p = 0.004). No significant associations were found for Aβ42, ptau181 and GFAP among ocular fluids relative to plasma. Bland-Altman analysis showed aqueous humor had the closest agreement to plasma across all biomarkers. Biomarker levels in ocular fluids revealed statistically significant associations between vitreous and aqueous for t-Tau (r = 0.5; p = 0.001), GFAP (r = 0.6; p < 0.001) and NfL (r = 0.7; p < 0.001).

CONCLUSION: AD biomarkers are detectable in greater quantities in eye fluids than in plasma and show correlations with levels in plasma. Future studies are needed to assess the utility of ocular fluid biomarkers as diagnostic and prognostic markers for AD, especially in those at risk with eye disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app