Add like
Add dislike
Add to saved papers

2D MoB MBene: An Efficient Co-Catalyst for Photocatalytic Hydrogen Production under Visible Light.

ACS Nano 2024 April 31
Highly active and low-cost co-catalysts have a positive effect on the enhancement of solar H2 production. Here, we employ two-dimensional (2D) MBene as a noble-metal-free co-catalyst to boost semiconductor for photocatalytic H2 production. MoB MBene is a 2D nanoboride, which is directly made from MoAlB by a facile hydrothermal etching and manual scraping off process. The as-synthesized MoB MBene with purity >95 wt % is treated by ultrasonic cell pulverization to obtain ultrathin 2D MoB MBene nanosheets (∼0.61 nm) and integrated with CdS via an electrostatic interaction strategy. The CdS/MoB composites exhibit an ultrahigh photocatalytic H2 production activity of 16,892 μmol g-1 h-1 under visible light, surpassing that of pure CdS by an exciting factor of ≈1135%. Theoretical calculations and various measurements account for the high performance in terms of Gibbs free energy, work functions, and photoelectrochemical properties. This work discovers the huge potential of these promising 2D MBene family materials as high-efficiency and low-cost co-catalysts for photocatalytic H2 production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app