Add like
Add dislike
Add to saved papers

Using leaf economic spectrum and photosynthetic acclimation to evaluate the potential performance of wintersweet under future climate conditions.

The function of landscape plants on the ecosystem can alleviate environmental issues of urbanization and global change. Global changes due to elevated CO2 affect plant growth and survival, but there is a lack of quantitative methods to evaluate the adaptability of landscape plants to future climate conditions. Leaf traits characterized by leaf economic spectrum (LES) are the universal currency for predicting the impact on plant ecosystem functions. Elevated CO2 usually leads to photosynthetic acclimation (PC), characterised by decreased photosynthetic capacity. Here, we proposed a theoretical and practical framework for the use of LES and PC to project the potential performance of landscape plants under future climatic conditions through principal component analysis, structural equation modelling, photosynthetic restriction analysis and nitrogen allocation analysis. We used wintersweet (an important landscaping species) to test the feasibility of this framework under elevated CO2 and different nitrogen (N) supplies. We found that elevated CO2 decreased the specific leaf area but increased leaf N concentration. The results suggest wintersweet may be characterized by an LES with high leaf construction costs, low photosynthetic return, and robust stress resistance. Elevated CO2 reduced photosynthetic capacity and stomatal conductance but increased photosynthetic rate and leaf area. These positive physio-ecological traits, e.g., larger leaf area (canopy), higher water use efficiency and stress resistance, may lead to improved performance of wintersweet under the predicted future climatic conditions. The results suggest planting more wintersweet in urban landscaping may be an effective adaptive strategy to climate change.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app