Add like
Add dislike
Add to saved papers

Flexible tactile sensors with interlocking serrated structures based on stretchable multiwalled carbon nanotube/silver nanowire/silicone rubber composites.

RSC Advances 2024 April 26
Flexible tactile sensors have attracted significant interest because of their application scope in the fields of biomedicine, motion detection, and human-computer interaction. However, the development of tactile sensors with high sensitivity and flexibility remains a critical challenge. This study develops a patterned, stretchable, and fully elastomeric multiwalled carbon nanotube (MWCNT)/silver nanowire (Ag NW)/silicone rubber (SR) composite. The addition of Ag NWs to MWCNTs enhances the transmission path of the conductive network, yielding a CNT/Ag NW/SR composite with a sensitivity coefficient of 40. This characteristic renders it suitable for use as a piezoresistive sensing material. The interlocking sawtooth structure can convert the mechanical stimuli of the sensor to the tensile strain of the composite, thereby enhancing its sensitivity and flexibility. Experimental results indicate that the developed tactile sensor exhibited a sensitivity of 2.82 N-1 at 0-0.5 N and 1.51 N-1 at 0.5-2 N. These haptic sensors also demonstrate good dynamic response, repeatability, and long life. Furthermore, experimental results show that these haptic sensors exhibit high reproducibility, fast dynamic response, and good mechanical and electrical stability. Because of these exceptional properties, the as-prepared sensor can be applied in the development of smart robots, prosthetics, and wearable devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app