Add like
Add dislike
Add to saved papers

Ion Kinetics and Neutron Generation Associated with Electromagnetic Turbulence in Laboratory-Scale Counterstreaming Plasmas.

Electromagnetic turbulence and ion kinetics in counterstreaming plasmas hold great significance in laboratory astrophysics, such as turbulence field amplification and particle energization. Here, we quantitatively demonstrate for the first time how electromagnetic turbulence affects ion kinetics under achievable laboratory conditions (millimeter-scale interpenetrating plasmas with initial velocity of 2000  km/s, density of 4×10^{19}  cm^{-3}, and temperature of 100 eV) utilizing a recently developed high-order implicit particle-in-cell code without scaling transformation. It is found that the electromagnetic turbulence is driven by ion two-stream and filamentation instabilities. For the magnetized scenarios where an applied magnetic field of tens of Tesla is perpendicular to plasma flows, the growth rates of instabilities increase with the strengthening of applied magnetic field, which therefore leads to a significant enhancement of turbulence fields. Under the competition between the stochastic acceleration due to electromagnetic turbulence and collisional thermalization, ion distribution function shows a distinct super-Gaussian shape, and the ion kinetics are manifested in neutron yields and spectra. Our results have well explained the recent unmagnetized experimental observations, and the findings of magnetized scenario can be verified by current astrophysical experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app