Add like
Add dislike
Add to saved papers

Designing Surface Passivators Through Intramolecular Potential Manipulation for Efficient and Stable Perovskite Solar Cells.

Small 2024 April 30
The conjugation of terminal ammonium salt groups with perovskite surfaces is a frequently employed technique that aims to enhance the overall performance of perovskite materials, encompassing both bulk and surface properties. Particularly, it exhibits heightened efficacy when applied to surface modification, due to its ability to mitigate defect accumulation and facilitate facile binding with the receptive sites inherent to the perovskite structure. However, the interaction of the bulk ammonium group with PbI2 has the potential to form a low-dimensional phase of perovskite, which may obstruct carrier extraction at the interface. Therefore, the surface passivators (MeO-PFACl) are designed through intramolecular potential manipulation. The combinations of the electron-donating methoxy group and π-π conjugation of the phenyl ring reduce the local potential at the reactive site of formamidinium group, making it less likely to form a low-dimension phase with perovskite. This surface passivation strategy effectively suppresses the surface nonradiative recombination and promotes the interface carrier extraction. The devices treated with MeO-PFACl have demonstrated exceptional performance, achieving a peak power conversion efficiency (PCE) of 25.88%, with an average PCE of 25.37%. These works offer a novel principle for enhancing both the efficiency and stability of PSCs using ammonium-incorporated molecules without the induction of an additional phase layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app