Add like
Add dislike
Add to saved papers

The e-liquid flavoring cinnamaldehyde induces cellular stress responses in human proximal tubule (HK-2) kidney cells.

Flavored e-liquid use has become popular among e-cigarette users recently, but the effects of such products outside the lung are not well characterized. In this work, acute exposure to the popular flavoring cinnamaldehyde (CIN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-100 µM CIN for 24-48 h and cellular stress responses were assessed. Mitochondrial viability via MTT assay was significantly decreased at 20 µM for 24 and 48 h exposure. Seahorse XFp analysis showed significantly decreased mitochondrial energy output at 20 µM by 24 h exposure, in addition to significantly reduced ATP Synthase expression. Seahorse analysis also revealed significantly decreased glycolytic function at 20 µM by 24 h exposure, suggesting inability of glycolytic processes to compensate for reduced mitochondrial energy output. Cleaved caspase-3 expression, a mediator of apoptosis, was significantly increased at the 24 h mark. C/EBP homologous protein (CHOP) expression, a mediator of ER-induced apoptosis, was induced by 48 h and subsequently lost at the highest concentration of 100 µM. This decrease was accompanied by a simultaneous decrease in its downstream target cleaved caspase-3 at the 48 h mark. The autophagy marker microtubule-associated protein 1 A/1B light chain 3 (LC3B-I and LC3B-II) expression was significantly increased at 100 µM by 24 h. Autophagy-related 7 (ATG7) protein and mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and PARKIN expression were significantly reduced at 24 and 48 h exposure. These results indicate acute exposure to CIN in the kidney HK-2 model induces mitochondrial dysfunction and cellular stress responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app