Add like
Add dislike
Add to saved papers

Sulodexide Inhibits Arterial Contraction via the Endothelium-Dependent Nitric Oxide Pathway.

Background/Objectives : Sulodexide (SDX) is a drug known for restoring the glycocalyx, thereby offering endothelial protection and regulating permeability. Additionally, it has antithrombotic and anti-inflammatory properties and has shown arterial vasodilatory effects. Endothelial cells play a crucial role in maintaining homeostasis, with their dysfunction being a key contributor to loss in vasodilatory response, especially in arterial pathologies. The aim of this study was to investigate the effects of SDX on stimulated vascular tonus in human arterial samples and to assess the function of the endothelial layer as a source of nitric oxide (NO). Methods : A total of 16 internal mammary artery remnants from coronary artery bypass graft surgeries were dissected into endothelium-intact and endothelium-denuded groups (n = 8 each). The arterial rings were equilibrated under tension, with their basal tonus recorded before and after phenylephrine stimulation. SDX's impact on arterial contraction was assessed through cumulative dose-response curves. NO synthase inhibitor (Nω-nitro-L-arginine methyl ester) was used to assess SDX's vasodilatory effect over the NO pathway. Results : SDX application resulted in concentration-dependent vasorelaxation in both endothelium-intact and endothelium-denuded groups at certain doses. However, the inhibitory effect of SDX was more pronounced in endothelium-intact rings at higher doses compared to endothelium-denuded rings ( p < 0.05). Similar inhibition of contraction curves was achieved for both endothelium-intact and endothelium-denuded rings after L-NAME pre-incubation, suggesting a necessity for NO-related endothelial pathways. Conclusions : SDX exerts a concentration-dependent inhibition on arterial contraction, emphasizing the critical role of an intact endothelium and NO-mediated pathways in this process. This underscores SDX's potential in treating endothelial dysfunction-related pathologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app