Journal Article
Review
Add like
Add dislike
Add to saved papers

The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy.

Cancers 2024 April 18
Metastasis (Met) largely contributes to the major cause of cancer deaths throughout the world, rather than the growth of the tumor mass itself. The present report brings together several of the pertinent contributors to cancer growth and metastatic processes from an activity standpoint. Such biological activities include the following: (1) cell adherence and detachment; (2) cell-to-cell contact; (3) contact inhibition; (4) the cell interfacing with the extracellular matrix (ECM); (5) tumor cell-to-stroma communication networks; (6) chemotaxis; and (7) cell membrane potential. Moreover, additional biochemical factors that contribute to cancer growth and metastasis have been shown to comprise the following: (a) calcium levels in the extracellular matrix and in intracellular compartments; (b) cation voltage and ATP-regulated potassium channels; (c) selective and non-selective cation channels; and (d) chemokines (cytokines) and their receptors, such as CXCL12 (SDF-1) and its receptor/binding partner, CXCR4. These latter molecular components represent a promising group of an interacting and synchronized set of candidates ideal for peptide therapeutic targeting for cancer growth and metastasis. Such peptides can be obtained from naturally occurring proteins such as alpha-fetoprotein (AFP), an onco-fetal protein and clinical biomarker.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app