Add like
Add dislike
Add to saved papers

Xylanase Supplement Enhances the Growth Performance of Broiler by Modulating Serum Metabolism, Intestinal Health, Short-Chain Fatty Acid Composition, and Microbiota.

This study aimed to investigate the effects of different levels of xylanase supplementation in a wheat-based diet on growth performance, short-chain fatty acids, intestinal health, microbial composition, and serum metabolism. A total of 1200 male chicks were randomly assigned to four wheat-based diet treatments: Group C (adding 0 mg/kg of xylanase), Group L (adding 50 mg/kg of xylanase), Group M (adding 100 mg/kg of xylanase), and Group H (adding 150 mg/kg of xylanase). The experiment lasted for 56 days. The results indicated that Group H broilers experienced a decreased feed-to-gain ratio throughout the study period. Additionally, dietary supplementation with xylanase led to an increase in the physical barrier, as indicated by increased VH and VH/CD in the gut ( p < 0.05). Furthermore, levels of D-lactic acid and endotoxin were reduced. Xylanase supplementation also increased the abundance of Muc-2, ZO-1, and Occludin ( p < 0.05). Moreover, xylanase supplementation enhanced the activity of sucrase and maltase in the duodenum ( p < 0.05), which may be attributable to the upregulation of the abundance of SI and MGA ( p < 0.05). Furthermore, xylanase addition promoted propionic acid produced by specific bacteria, such as Phascolarctobacterium , and influenced the microbial composition to some extent, promoting intestinal health. Additionally, 150 mg/kg of xylanase supplementation increased the amino acid, peptide, and carbohydrate content and upregulated the metabolism of amino acids related to histidine, cysteine, methionine, and other pathways ( p < 0.05). These findings suggest adequate xylanase supplementation can enhance nutritional digestibility and absorption, improve growth performance, stimulate endogenous enzyme activity, optimize intestinal morphology and barrier function, and positively influence acid-producing bacteria and amino acid metabolic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app