Journal Article
Review
Add like
Add dislike
Add to saved papers

Disease Mechanisms and Therapeutic Approaches in SMARD1-Insights from Animal Models and Cell Models.

Biomedicines 2024 April 12
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal childhood motoneuron disease caused by mutations in the IGHMBP2 gene. It is characterized by muscle weakness, initially affecting the distal extremities due to the degeneration of spinal α-motoneurons, and respiratory distress, due to the paralysis of the diaphragm. Infantile forms with a severe course of the disease can be distinguished from juvenile forms with a milder course. Mutations in the IGHMBP2 gene have also been found in patients with peripheral neuropathy Charcot-Marie-Tooth type 2S (CMT2S). IGHMBP2 is an ATP-dependent 5'→3' RNA helicase thought to be involved in translational mechanisms. In recent years, several animal models representing both SMARD1 forms and CMT2S have been generated to initially study disease mechanisms. Later, the models showed very well that both stem cell therapies and the delivery of the human IGHMBP2 cDNA by AAV9 approaches (AAV9- IGHMBP2) can lead to significant improvements in disease symptoms. Therefore, the SMARD1 animal models, in addition to the cellular models, provide an inexhaustible source for obtaining knowledge of disease mechanisms, disease progression at the cellular level, and deeper insights into the development of therapies against SMARD1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app