Add like
Add dislike
Add to saved papers

Post-Stroke Functional Changes: In-Depth Analysis of Clinical Tests and Motor-Cognitive Dual-Tasking Using Wearable Sensors.

Bioengineering 2024 April 3
Clinical tests like Timed Up and Go (TUG) facilitate the assessment of post-stroke mobility, but they lack detailed measures. In this study, 21 stroke survivors and 20 control participants underwent TUG, sit-to-stand (STS), and the 10 Meter Walk Test (10MWT). Tests incorporated single tasks (STs) and motor-cognitive dual-task (DTs) involving reverse counting from 200 in decrements of 10. Eight wearable motion sensors were placed on feet, shanks, thighs, sacrum, and sternum to record kinematic data. These data were analyzed to investigate the effects of stroke and DT conditions on the extracted features across segmented portions of the tests. The findings showed that stroke survivors (SS) took 23% longer for total TUG ( p < 0.001), with 31% longer turn time ( p = 0.035). TUG time increased by 20% ( p < 0.001) from STs to DTs. In DTs, turning time increased by 31% ( p = 0.005). Specifically, SS showed 20% lower trunk angular velocity in sit-to-stand ( p = 0.003), 21% longer 10-Meter Walk time ( p = 0.010), and 18% slower gait speed ( p = 0.012). As expected, turning was especially challenging and worsened with divided attention. The outcomes of our study demonstrate the benefits of instrumented clinical tests and DTs in effectively identifying motor deficits post-stroke across sitting, standing, walking, and turning activities, thereby indicating that quantitative motion analysis can optimize rehabilitation procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app