Add like
Add dislike
Add to saved papers

Knockdown of IRF8 alleviates neuroinflammation through regulating microglial activation in Parkinson's disease.

Neuroinflammation associated with microglial activation plays a role in the development of Parkinson's disease (PD). The upregulation of interferon regulatory factor 8 (IRF8) in microglia following peripheral nerve injury has been observed to induce microglial activation. This suggests the potential therapeutic significance of IRF8 in PD. This research aims to explore the effects of IRF8 on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and lipopolysaccharide (LPS)-induced neuroinflammation, along with its underlying mechanisms. The study examines the differential expression of IRF8 and its effects on neuropathological changes using a PD mouse model and a PD model established from BV2 cells in vitro. IRF8 was found to be prominently expressed in the substantia nigra pars compacta (SNpc) region of PD mice and LPS-stimulated BV2 cells, while the expression of tyrosine hydroxylase (TH) and dopamine (DA) content in the SNpc region of PD mice was notably reduced. MPTP treatment and LPS stimulation intensified microglial activation, inflammation, and activation of the AMPK/mTOR signaling pathway in vivo and in vitro, respectively. Upon IRF8 silencing in the PD mouse and cell models, the knockdown of IRF8 ameliorated MPTP-induced behavioral deficits, increased the counts of TH and Nissl-positive neurons and DA content, reduced the number of Iba-1-positive microglia, and reduced the content of inflammatory factors, possibly by inhibiting the AMPK/mTOR signaling pathway. Similar outcomes were observed in the PD cell model. In conclusion, the suppression of IRF8 alleviates neuroinflammation through regulating microglial activation in PD models in vivo and in vitro by the AMPK/mTOR signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app