Add like
Add dislike
Add to saved papers

Ferulic Acid Derivatives Ameliorate Intestine Barrier Destruction by Alleviating Inflammatory Responses in Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease.

Toxics 2024 April 4
Inflammatory bowel disease (IBD), a chronic disorder affecting the colon and rectum, involves the overproduction of pro-inflammatory cytokines causing damage to tight junctions (TJ) in the intestinal epithelial cells and chronic inflammation. The current mainstay of treatment, sulfasalazine, often causes adverse effects, thereby necessitating the exploration of alternative herbal medicines with fewer side effects. Portulaca oleracea L. ( P. oleracea ), a traditional medicinal herb, contains feruloyl amide compounds. We synthesized new compounds by conjugating ferulic acid (FA) with (±)-octopamine. Our study focused on novel FA derivatives that demonstrate protective effects against the intestinal epithelial barrier and inflammatory responses. In lipopolysaccharide-induced cells, C1 and C1a inhibited the production of inflammatory mediators. In Caco-2 cells, these compounds maintained the TJ protein expression, thereby demonstrating their protective effects on the epithelial barrier. In a mouse model of dextran sulfate sodium-induced IBD, a treatment with these compounds ameliorated features including a body weight reduction, colon shortening, an increased disease activity index, and histopathological changes. Furthermore, C1a demonstrated greater efficacy than C1 at the same concentration. These findings suggest that the novel FA derivative (C1a) effectively alleviates clinical signs and inflammatory mediators in IBD, making these compounds potential candidates as natural medicines for the treatment of IBD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app